پیام‌های نوکته گذاران

لطفاً اطلاعاتی را جمع‌آوری کنید و آنها را برای گزارش دریافت کنید.
The ingredients concerning the preparation of Turkish ink were as follows:

— For one whetstone measure of lampblack add 4 measures of gum arabic.

— The percentage of the gummy substance is very important; if too weak the ink stains and transfers the tracings on the opposite sheet, if too strong the written page stick to each other.

— Gum arabic processed with cold water during 3 to 5 days reaches the consistency of pure honey. This syrupy solution was placed in a marly mortar and a determined amount of lampblack was added slowly. During this last procedure the solution was beaten with a pestle.

— In order to obtain an homogenous mixture, at least 100-000 pounds are needed. The pounding was continued while the solution was diluted in pure water: rain or distilled water. The amount of water used varied according to the nature of the gum arabic and the use of the ink. Generally for one whetstone of the lump of ink in the mortar 8 to 10 parts of water was used. The ink was the filtered first through a cotton cloth and then pressured through a woollen mat, before being bottled and well corked for preservation.

— For seals and private sigs the ink prepared in the mortar was dried; the powder thus obtained was moulded in a cylindrical or pyramidal shape of bread.

Some calligraphers added various ingredients to the ink such as: vinegar, pomegranate juice, vine sap, candy-sugar, rose water, saffron water, genista juice, mos etc., so as to obtain a pleasant odour, brightness or fluidity.

In the past there were many workshops in Istanbul manufacturing ink, and these were usually located in the street of the paper merchants or in the district of Fatih, and Üsküdar.

The famous chronicler, Evliya Celebi, Mehmet Zildijan (1611-1681), in his well known «Seyahatname» mentions that in Istanbul there were at least 40 workshops manufacturing ink.

Amongst the masters in the production of Turkish ink are:

the past
Yâkuti Mustafa, well known calligrapher of the XVIIth century; Sheikh Hamedullah was greatly honoured by Sultan Bayezid II (1477 - 1512).

and for the present
Hamid, well known calligrapher; Prof. Necmeddin Okay calligrapher and master, as well as his pupils Bekir and Recep.

Red ink:
One of the first luxuries of the copyist was the use of coloured inks amongst which the red one seems to be the most beautiful one.

The initial letter of each chapter, the headings, marginal notes and the important passages of manuscripts written in black ink were the important passages of manuscripts written in black ink were usually outlined in red.
During the Byzantium administration red ink became the 'Sacred Inks. It was reserved only for Imperial Decrets, and in the year of our Lord 470 an imperial decree prohibited the use and possession of red ink amongst the civilians and the transgressors were to be sentenced to death.

Following the example of the Emperors of Constantinople, the French king Charles the Bold (853-877) sometimes, signed in red.

The red haematite and ochre were used by the Egyptians for the preparation of red ink. We owe to the cinnabar ink (minium) the name of miniature given to the illustration of manuscripts, already in use at the time of the Romans. Very soon, Byzantine and Persian artists excelled in this art. Under Charles the Great it became very popular to embellish manuscripts.

Soapwort, red peroxide of iron (golgetar in arabic), root of alkanet, vermillion, red haematite, sufflower, blood-red, cochineal etc. are various ingredients used in the manufacturing of red ink.

The preparation of red ink is as follows:

Take one weight measure of soapwort reduced to small pieces, rap it in a piece of cloth and place it in a kettle containing 1200 parts of rain water. Boil until half of the amount of water has evaporated. Add one weighe of roots of alkanet or red haematite or bleo-red or powdered coloctor, continue the boiling for another 20 to 25 minutes. Then add 6 parts (weight measure) of finely powdered cochineal, boil for another 10 minutes and allow it to cool. Filter the solution and then add powdered alum in sufficient amount and leave it to rest. The laquer will settle to the bottom; the liquid is decanted, the precipitated part is washed and then the paste is left to dry.

The laquer obtained is added to a syrupy solution of gum arabic and the requested concentration of ink is obtained by adding water.

The ordinary red ink was made with a mixture of red haematite and white lead moistened with a little vinegar crushed and mixed on a small board then added to a solution of gum arabic and finely brought to the requested concentration by diluting it with water.

Various shades of red could be obtained by varying the amounts of white lead.

The coloured inks, blue, violet, green, yellow as well as the metal ink such as gold and silver, were mainly used for illumination, which is a neighbouring craft of calligraphy and whose takes was to decorate manuscripts.
Calame (Reed-pen)

The reed-pen was the tool used by the Egyptians for tracing on the papyrus and parchments as hieroglyphs before the discovery of the metal-tipped pen.

The reed-pen is made of a stalk of reed cut at a slanting manner so as to have an elliptical surface. At the end of the pen was placed quite a large tip which was slit in length to enable the retention of ink.

The copyists and calligraphers preferred the hard reeds from Java and India. For writing capital letter and headings the pens were made of thick reeds, bambou, branches of trees and the pen tips had several clefts.

The use of reed pens in Europe ended in the 15th century when they were replaced by quill-pens. Nevertheless several paragraphs of letters written by Reuchlin (1456 - 1522) to Erasmus (1467 - 1536) prove that the writing reed-pens were still used in the 15th century.

In Turkey, reed-pens were the most common tool used for handwriting up to the 17th century. Even today, calligraphers prefer the reed pen (kalem) of thick reed, bambou or wooden branches (fig. 13).

Sharpen (Pen-knife)

The sharpsor or Kalemsaz, as it is called in Turkish, was the pen-knife used for cutting reed in order to make reed-pens. They consist of three parts.

— a very sharp steel blade. The tip of this blade was either curved, pointed or lance-shaped. Near the collar the blade usually bears the name of the maker. Luxurious sharpeners were ornamented with arabesques, inscription inlaid in silver or gold.

— the handle was usually made of precious metals such as ivory, mother of pearl, coral, agate, yellow amber, or rare woods like ebony, aloes, jujube tree etc. also with carvings and inscriptions in precious stones.

— the collar of these Pen-knives were usually in bronze, silver or gold. The size of the sharpeners varied according to the material to be cut (fig. 14).

Many artists distinguished themselves pen-knives maker such as the famous artisans: Fenni, Asîl, Babâ, Recal from Galata, Recal from Eyup, Rizâ, Miâli, Şehîr Rûni, Resmi, Söbi, Sîki, Sîkiî, Muhyî, Deûa Echref, Sûmî, Façê, Necîp, Yûmî, Zeîî ve Zihîl (41).

Cutter?

This is a tablet in bone or ivory where the reeds were sharpened. It enabled the reed to be cut at the requested angle: right or slanted, and at the same time to protect the sharp blade.

In the Museum of Topkapı, various cutters made by famous artisans such as Tefîfî, Ziya, Resmi, Fikrî, Dede, Cevîrî, Kemalî, Nokîî (Edînâ), Fohîî (Bursa), Rizâ, and Muhyî - can be seen.
Reed-Pen cases?

To carry these reed pens or simply to protect them, it became common use to keep them in small cases. These were made of cardboard,gofered leather, copper, brass, ivory etc. They were extremely dainty and of often precious.

The reed-pen cases made in Edirne were illuminated and richly ornamented. The museum of Turkish and Moslem Art in Istanbul has a collection of different types of these cases as well as a large amount of tools used by calligraphers in the XVth century.

Inkstands and inkspots

The inkspots of the Egyptians were composed of a large pot with holes; some of these holes were used to keep the reed-pens and the others for little pots in terra cotta filled with black and red dry which were diluted with water (fig. 17).

There was also a portable writing set: a case for reed-pens, a small bag with dried ink, a pot with two pots held altogether by a rope so as to ease the carrying of these tools either by hand or over the shoulder (fig. 18) (33).

The Chinese also made use of dry ink and the small pots where these were diluted, but they used paint brushes instead of reed-pens.

For the Latins the writing desk or scripatorium was the name where they gave to a place where they wrote.

In the olden days the inkpot was kept separate from the inkspots and was called corona (small horn) because the shape resembled that of a horn of an animal, and when writing, it was held in the hand. When the ink pot was used as an independent instrument, it was protected against spilling by a flock of silk or cotton. This protection, when regularized, limited the filling of the pen and prevented it from spilling ink while writing.

The ink pots were very soon richly adorned and embellished; they were made of lead, bronze, silver, gold, porcelain, earthenware etc., decorated with enamel, chiselled or painted. The jewellers were in constant competition with cabinet-makers in creating inkspots of unrivalled beauty (fig. 19).

Travellers and army scribes (junioraries) kept under their belt a writer’s bag containing an inkpot, reed-pens, and pen-knives. These portable writing sets known as DIVIT were made in chiselled brass or very often inlaid with precious stones.

The Museum of Topkapy displays several masterpieces of those portable sets (DIVIT), in the department of manuscripts and calligraphy (Fig. 20).

(31) Ort. Prof. Dr. Süheyl Ünver, Türk İncisi El Sanatları Tarihi Özetleme. (History of Turkish Fine Handicrafts) Ankara, 1964.
PAPER INDUSTRY IN TURKEY

Manufacturing of paper «with machine».

Until the end of XVIII century paper could be produced only by hand one by one. However, needs were always increasing and number of its utilizations were compromised due to little dimensions of papers.

It was a worker’s honor, Louis Nicolas Robert (1761—1826), who worked in the Papeterie d’Essonne near Paris to pass from «paper by mechanical means» to «continuous paper».

In 29th May of 1791, he demanded the brevet of a machine designed for manufacturing of large dimensioned papers and which could work with a few number of workers. But it was very laborsome to obtain that brevet of 15 years until 18th of January 1799 for a machine «proper to make paper of fixed size and of large dimensions» (1)

This primitive machine contained most of the perfection which were dotted at the beginning.

The Robert paper machine producing alot rapidly and cheaply was surely to modify the ancient methods profoundly and gave a great impulsion to art of paper manufacturing which in turn was to bring it to the grand industry range.

In 27th June of 1800, L.N. Robert Left his brevet to his boss Lagar Didot. This man took this invention to England where he breveted it in 1801 with association of his stepbrother Gambile.

The Robert paper macching at English construction which was utilized with success in England after 1804, was soon adopted in almost everywhere: Germany 1817, Austria 1819, U.S.A. 1820, Denmark 1820, Switzerland 1830, Sicily (Isola di Sora) 1847, etc.

The mechanics man, Callas of Paris, constructed two paper machines which were installeed to paper-mills of Sorel and of Sousse near Dreuix in 1816.

In 1843 The Ottoman Government had decided to buy a paper machine constructed in England by means of Bryan Donkin house to install in Izmit (2).

But the fete met great difficulties in front of the mixed commission charged for this affair (3).

As a result, only two paper-mills were equipted for manufacture of paper «by mechanical means». They are as follow:

(1) Firmin Didot, the centurion of the paper machine. Paris 1900.
(2) State archives. Document No 865 (Dossier of economical affairs).
(3) State archives Document No 1.149.