The copyist of manuscript C 2114 from the collection of the St. Petersburg Branch of the Institute of Oriental Studies [1] has made a mistake. Being probably distracted for a while from his work he then resumed copying of a passage already done by him earlier. Due to this mistake we, for the first time, get some definite material and an opportunity to discuss the regularity of individual handwriting in medieval Arabic manuscripts.

Fig. 1 shows two neighbouring pages of the above-mentioned manuscript. The right one (fol. 250b), starting from the last word of the thirteenth line and to the end of the page, contains the text repeated on the next page (fol. 251a) — it is crossed out by the scribe. Both passages take the same number of lines — 22, which makes our find significant as the first and so far the only evidence testifying to the stability and balanced density of handwriting within a single Arabic manuscript.

It is true, of course, that the volume of the text revealing this quality of handwriting is too small to make any far-going conclusions. Still, however, it is much more representative than it may appear [2], and we do not overestimate the proofing value of the discovered twin-texts. It is enough at least to presume that the density of handwriting in Arabic manuscripts was well-balanced. As for the required full-scale system of arguments, one should admit that any search for longer twin-texts in manuscripts does not promise much. We may try therefore to test the reliability of our suggestion "from the opposite". Let us make several first steps in this direction.

Manuscripts C 958 and C 711 from the same collection of the St. Petersburg Branch of the Institute of Oriental Studies present two copies of the same work — Durar al-ahkām fi sharh Ghurar al-ahkām by Mullā Khusrō (785/1480) [3]. One of them (C 711) is incomplete at the beginning, but the remaining text appears in the second copy (C 958) already from the 15th line of its first folio (compare figs. 2 and 3), which means that in manuscript C 711 only one leaf is missing, with not more than 23 lines of the text [4].

Estimating by codicological methods the maximum possible size of the lacuna in manuscript C 711 (not more than 23 lines) we may verify the reliability of our suggestion on the even density of the manuscript text by calculating the size of the same lacuna arithmetically.

If the density of handwriting is really a constant value for each manuscript, then the density of two copies of the same text may be compared through linear (line by line) extension of these records — these last can be expected to be proportional in the same way as the proportion of their corresponding density. Let us verify this by calculations. The text taking the first 23 lines in manuscript C 711 (see fig. 4) occupies approximately 22.2 lines in C 958, running from line 15 of folio 2b to line 20 of folio 3a (see figs. 2 and 3), which means that the handwriting of C 958 is slightly more dense (1.036 times) than in C 711 (23:22.2 = 1.036). This value presenting the relation of two densities is the instrument for the further conversion of linear text volumes (lines, pages, folios), known by one manuscript (in our case — C 958), into corresponding volumes of a different copy of the same work (C 711).

The comparison of the initial parts of manuscripts C 958 and C 711 (see figs. 2 and 4) shows that the missing part of the text in C 711 takes 14 full lines and approximately three quarters of the 15th line in C 958. In all, it makes 14.75 lines. In C 711 it should have taken 1.036 times more space, namely 15 or 16 lines (14.75 × 1.036 = 15.28 lines).

It is less than the normative volume for one page, for which the standard in C 711 is 23 lines, as the preliminary ruling of the MS proposed. The difference between the results of our calculations and the ruling requirements of the manuscript should not, however, undermine our trust in the validity of these calculations. It was evident from the start that the missing text could not occupy a whole page. The
The explanation is very simple and obvious: probably there was a coloured pattern (‘unwān) above the text occupying the space reserved for the first 7 or 8 lines. The beginning of the second copy of the same work is decorated with ‘unwān (see fig. 2) [5].

The case considered here in confirmation of the convertibility of manuscript texts is, of course, elementary, i.e. it could have been interpreted with the same results without any calculations. We selected it to enable the common sense of the reader-specialist to follow the mathematical conversion of the text from one volume into another when discussing the method suggested here. Let us consider now a more complicated case, also, however, with a quite predictable size of the lacuna. Another pair of manuscripts from the same collection — C 2114 and C 2023 (see figs. 5 and 6) [6] — can be taken for this purpose.

The first of these manuscripts (C 2114) is defective — the beginning is missing. The number of the missing folios may be estimated by its pagination, which has been done twice at different periods. One is quite recent, probably done when describing the manuscript for the catalogue, the earlier one had been made either by the scribe or by one of its former Muslim owners, obviously before the beginning of the manuscript was lost. A sample of the two pagination can be seen on fig. 1 at the upper left hand corner, where the present folio 251 of the manuscript is numbered as folio 271 in Arabic. The difference in numbers allows to suggest that 20 folios at the beginning of the manuscript are missing, i.e. two full blocks (kurrāṣa) of 10 folios each. This suggestion basing upon the old foliation we are going to verify by calculations, once more testing the practicability of the method.

Like in the former case, to estimate the conversion coefficient of density, we are taking a fragment of text common for the two manuscripts. The fragment selected this time is shown on fig. 5 (C 2023, fol. 22b, line 26 — fol. 23a, lines 1—27) and fig. 6 (C 2114, fol. 1a). The comparison of the two records of this fragment (35 lines in C 2114 and 33 lines in C 2023) gives the conversion coefficient — 35 : 33 = 1.06. We can notice also that C 2023 has a more dense text. Now we can approach the estimation of the volume of the missing text in C 2114.

The text missing in C 2114 ends on the 26th line of folio 22b of C 2023 taking in the last one approximately 22 folios. It makes 1364 lines (44 pages, 31 lines on each page). The first page of the manuscript (fol. 1a), however, bears no text, i.e. 31 lines should be subtracted. On the last page (fol. 22b) only 25 of 31 lines corresponding to the lacuna should be taken into account. Making these corrections we find that the text missing in C 2114 is equivalent to 1327 lines of C 2023. Now, using the conversion coefficient, we can estimate the size of the lacuna in its own measure units: 1,327 × 1.06 = 1,406.6 lines. With the normative of 70 lines per folio (35 × 2) for manuscript C 2114 we find the right and, what is important, the expected answer: 20 folios (1,406 : 70 = 20.08 folios).

In this way the suggestion of the loss of 20 folios by manuscript C 2114 has been confirmed. It is absolute, if speaking of the number of the leaves of paper bearing the text, or relative, taking into account the text itself — actually, the value estimated was the volume of the text. The matter is that, according to the general rule, the first page of the manuscript could not bear any text, so we could have expected our calculations to show not 20 but 19.5 leaves. It means that, when converting the text, the mistake made around 2.5% of its volume.

Is this error acceptable, or is it too big? In our case, when we actually analyse the contents of the manuscript by blocks, it makes no problem at all. A text written on 39 pages or on 40 pages would equally require 20 leaves of paper. It is, moreover, too early now to discuss errors natural when calculating the volume of a non-typed (handwritten) text. Taking into account the part of psychosomatic factors in the process of writing, one can foresee that the very presence of these errors and their distribution by size following some definite pattern are inevitable. One may happen to compare texts made by scribes of different skill, experience, and even temperament. It is difficult, on the other hand, to estimate the part played by the cursive nature of the Arabic script which is able to be compressed and decompressed without loosing its natural appearance, i.e. these changes are practically undetectable by human eye.

At the same time, there are definitely factors maintaining the density of the script within certain limits, especially when it concerns the work done by a professional scribe. One of the most important factors was using of a ruled pattern for the future text, which made the scribes work out a habit for a standard line.

The pattern for ruling Arabic manuscripts (mīṭāra) has been described as early as the last century, in particular by English Arabist E. W. Lane (1801—1876): “Paper is ruled by putting underneath it a piece of cardboard paper with cords (mīṭāra) glued across it and pressing it slightly” [7]. This primitive but effective device, once widespread over the Muslim East, is directly related to the subject of the present article.

II

The application of mīṭāra introduced an important feature into the shaping of a manuscript. It ensured the same length of lines, their equal number and the same distance between them on all pages of the book. It created a number of practical conveniences and possibilities doubtless used by medieval scribes. Let us consider some of them.

First of all, it is the estimation of the volume of text in collections of verse (dīwāns). The length of the line is of no significance here, because each verse (bāyāt) occupies a single line, never going to the next one. What is variable and significant in different copies is only the number of lines per page. In this way a manuscript of 250 folios with a 25-line mīṭāra will give us 25 bāyāts per page, 50 bāyāts for a single folio and 12,500 bāyāts for the whole manuscript (in fact, up to 12,500 bāyāts) [8].

Since every bāyat takes only one line in the manuscript, hence from follows the rule: the number of bāyāts in the manuscript corresponds to the number of lines, and, vice versa, the number of lines corresponds to the number of bāyāts. This simple relation turns collections of verse into a special category of manuscripts: calculations over them produce results freely convertible from one mīṭāra to another with no additional information required. For this rea-
The matter is that in prosaic texts, unlike in verse, the length of the line is not an account unit indifferent to the length of the textual fragment. In this case the length of the line is no longer a self-standing unit measuring the completeness or incompleteness (defectiveness) of the whole text, the instrument of getting the quantitative estimation of the text in question as a sum of units-lines. Prosaic text, of course, is also divided into \textit{mistara} lines. It has, however, no internal measure like the metrical unit which in the first case determined both the length of the line and the equal total number of lines in all copies of the poetic work in question. Prosaic text is divided into lines after the external, and for this reason irregular measure — the length of the line in this or that \textit{mistara}. Versified text always gives the same total number of lines, no matter what kind of \textit{mistara} is used. Prosaic text gives a different number of lines, depending on different \textit{mistaras} [11].
لا يوجد نص يمكن قراءته بشكل طبيعي من الصورة المقدمة.
of the text convertibility effect. The two most important manuscripts of *Fihrist* by Ibn al-Nadîm (Paris, No. 4457 and Dublin, No. 3315) are "inconvenient". The matter is that the density of text in them is uneven on different and sometimes on the same pages — against the rule of proportionality declared above. The entire blame for that should not be laid on the copyists. It happens mainly due to the uneven character of the textual materials: usually condensed records of the lives of Arabic authors or deliberately expanded long lists of their works. Besides, one of the manuscripts contains here and there vast free spaces reserved for supplements by the author of *Fihrist* himself and preserved in the copy made directly from the autograph. But even in similar cases it is possible, within certain frames, to apply conversion coefficients. I shall try to demonstrate it by solving one peculiar problem which arose when preparing a new scholarly publication of the above mentioned *Fihrist* by Ibn al-Nadîm.

Nine folios (fol. 10a—18b) of the Paris manuscript No. 4457 show a handwriting different from that of the rest of the book. It means definitely that the corresponding folios had been lost and the missing part was restored by a different scribe. What attracts our attention is the number of leaves lost and restored later. It is sufficient to presume that a whole block (kurrâsa), i.e. having an even number of folios, fell out of the manuscript. But what was its original volume? Blocks, as we know, could be of 8, 10 and 12 folios. After some analysis it becomes clear that a kurrâsa of 8 folios should be omitted. The amount of text on the nine "restored" folios is too huge to be set on the original eight. It can be proved in the following way.

The field occupied by the text is practically equal both in the original and the restored part of the manuscript (though there are some slight differences we are going to consider below). Though the actual size of the text field is not indicated in the published description of the Paris manuscript, and the manuscript itself is not, unfortunately, available to me, it is possible to see from the photocopy I have due to the courtesy of Bibliothèque Nationale in Paris that the text fields are of the same size. The manuscript was photographed in the Library by two pages per one frame, so there are two cases when the original and the restored pages appear within one frame of the field (fols. 9b—10a and 18b—19a). It means that they were photographed simultaneously from the same distance. Prints from the film were made frame by frame in the laboratory of the St. Petersburg Branch of the Institute of Oriental Studies, which ensured equal scale for neighbouring pages on the prints. It is possible therefore to compare the dimensions of the text fields, using only a ruler and not taking the actual scale into account. That was what we did for coming to the conclusion mentioned above.

The dimensions of the two mistaras turned to be almost equal. The number of lines is the same — 16 lines per page. Taking into account these equal parameters, it becomes evident from the start that the copyist of the restored part has failed to arrange the text within 8 folios. Even though his handwriting is more dense, he had to use one more folio, i.e. 32 lines (following the mistara), plus 4 additional lines which he added to the last folio disturbing its original ruling. That was what actually took place. Eight 16-line mistara folios make 256 lines, 9 folios make 288 lines, while the actual record took 292 lines — 36 lines more than it could have been in a kurrâsa of 8 folios. Four extra lines were added exactly to the last folio of the restoration (fol. 18a—b), which demonstrates that the copyist of the restored part was striving to set the text not within 8 but within 9 folios. He succeeded, miscalculating only by four lines.

The same is confirmed by the analysis of the density of the text of the restored part, which is evidently higher than in the rest of the manuscript. Since the method of a similar analysis has never been demonstrated anywhere, and the volume of the text in question is comparatively small (9 leaves), we would like to demonstrate the density of the text in detail, which in other cases will be doubtless omitted, being dissolved in general formulas (see Table).

The Table is presenting all possible characteristics of the text density of the restored part: the number of characters-letters for each line of its 18 pages, average density for each particular page (horizontal rows); for a more precise tracing of the dynamics of handwriting the same is done for groups of corresponding lines (columns) [13]; finally, it is marked how often and where the scribe was going beyond the borders of his own ruling-mistara (column "Notes", also columns for the 17th and the 18th line). It is evident from the Table that the density of the text is fluctuating, reaching its maximum on folios 12a, 15b, then on the last 4 pages of the restored part (fols. 17a, 17b, 18a and 18b) [14]. The increase of density is achieved, especially on the last folio (18a—18b) also by extending lines (i.e. by going beyond the mistara frame) and by increasing the number of lines on the last page from 16 to 18 (i.e. also by breaking the frame in the vertical direction). Finally, it should be taken into account that the mistara frame of the restored part was overloaded with text: 41.8 characters per line (see Table) against 37.75 characters per line [15] in the main part of the Paris manuscript.

So, we once more come to the following conclusion: the scribe was striving hard, manipulating with the density of handwriting, to arrange the text within the given 9 folios. There was no way to fit the text into 8 folios having the same mistara as the rest of the Paris manuscript. It was not possible even to arrange it within 9 folios, if he had followed the mistara strictly. Evidently, the initial text replaced by the present restoration occupied 10 folios (following the rule of the even number of folios in one block)?

Now let us reckon the volume of the restored part of the manuscript in the characters of the Arabic alphabet (the total sum of lines multiplied by average density): (18 pages × 16 lines + 4 lines) × 41.8 characters = 12,205.6 characters. Taking the density of the original, which is equal to 37.75 characters (see above, note 15), we find that this volume is equal to 323.3 lines of the lost original part (12,205.6 : 37.75) or to 20.2 of its pages (323.3 : 16), i.e. around 10 folios. The extra 0.2 of a page, the inevitable error in reckoning, make only 3 lines of text.

In the case of the Paris manuscript the demonstration of convertibility does not possibly require such a detailed analysis. The question of the size of the lacuna restored in the manuscript is important, however, in a different context — the study of *Fihrist*, filiation of its copies and the authenticity of its text. The matter is that to establish the critical text covered by the restored lacuna we have only two manuscripts — Paris No. 4457 and Dublin No. 3315.
Fig. 2
VAL. POLOSIN. Arabic Manuscripts: Text Density and Its Convertibility in Copies of the Same Work

Fig. 4
Fig. 5 (continuation)
Absolute and average characteristics of text density in the Paris manuscript 4457 (in characters—letters)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fol. 10a</td>
<td>41</td>
<td>29</td>
<td>46</td>
<td>38</td>
<td>37</td>
<td>47</td>
<td>44</td>
<td>41</td>
<td>42</td>
<td>47</td>
<td>50</td>
<td>44</td>
<td>41</td>
<td>45</td>
<td>41</td>
<td>42</td>
<td>-</td>
<td>-</td>
<td>42.2</td>
</tr>
<tr>
<td>fol. 10b</td>
<td>35</td>
<td>37</td>
<td>43</td>
<td>41</td>
<td>33</td>
<td>39</td>
<td>31</td>
<td>23</td>
<td>39</td>
<td>43</td>
<td>41</td>
<td>45</td>
<td>40</td>
<td>38</td>
<td>37</td>
<td>44</td>
<td>-</td>
<td>-</td>
<td>38.0</td>
</tr>
<tr>
<td>fol. 11a</td>
<td>41</td>
<td>46</td>
<td>43</td>
<td>41</td>
<td>39</td>
<td>44</td>
<td>44</td>
<td>39</td>
<td>43</td>
<td>44</td>
<td>42</td>
<td>38</td>
<td>44</td>
<td>48</td>
<td>41</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>42.9</td>
</tr>
<tr>
<td>fol. 11b</td>
<td>47</td>
<td>49</td>
<td>54</td>
<td>39</td>
<td>29</td>
<td>42</td>
<td>42</td>
<td>21</td>
<td>50</td>
<td>43</td>
<td>27</td>
<td>14</td>
<td>46</td>
<td>41</td>
<td>47</td>
<td>43</td>
<td>-</td>
<td>-</td>
<td>39.6</td>
</tr>
<tr>
<td>fol. 12a</td>
<td>47</td>
<td>41</td>
<td>45</td>
<td>45</td>
<td>46</td>
<td>43</td>
<td>45</td>
<td>31</td>
<td>46</td>
<td>49</td>
<td>43</td>
<td>43</td>
<td>48</td>
<td>46</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>44.2</td>
</tr>
<tr>
<td>fol. 12b</td>
<td>43</td>
<td>41</td>
<td>42</td>
<td>47</td>
<td>46</td>
<td>43</td>
<td>42</td>
<td>41</td>
<td>13</td>
<td>41</td>
<td>26</td>
<td>16</td>
<td>46</td>
<td>45</td>
<td>49</td>
<td>43</td>
<td>-</td>
<td>-</td>
<td>39.0</td>
</tr>
<tr>
<td>fol. 13a</td>
<td>41</td>
<td>36</td>
<td>20</td>
<td>41</td>
<td>45</td>
<td>42</td>
<td>41</td>
<td>52</td>
<td>47</td>
<td>37</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>23</td>
<td>31</td>
<td>36</td>
<td>-</td>
<td>-</td>
<td>39.0</td>
</tr>
<tr>
<td>fol. 13b</td>
<td>see note 13</td>
</tr>
<tr>
<td>fol. 14a</td>
<td>50</td>
<td>51</td>
<td>46</td>
<td>43</td>
<td>44</td>
<td>39</td>
<td>50</td>
<td>44</td>
<td>49</td>
<td>42</td>
<td>36</td>
<td>41</td>
<td>37</td>
<td>39</td>
<td>28</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fol. 14b</td>
<td>0</td>
<td>21</td>
<td>41</td>
<td>40</td>
<td>36</td>
<td>39</td>
<td>38</td>
<td>45</td>
<td>45</td>
<td>43</td>
<td>37</td>
<td>42</td>
<td>46</td>
<td>37</td>
<td>44</td>
<td>46</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fol. 15a</td>
<td>40</td>
<td>35</td>
<td>44</td>
<td>35</td>
<td>33</td>
<td>42</td>
<td>27</td>
<td>46</td>
<td>44</td>
<td>37</td>
<td>46</td>
<td>42</td>
<td>43</td>
<td>42</td>
<td>46</td>
<td>36</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fol. 15b</td>
<td>47</td>
<td>48</td>
<td>45</td>
<td>39</td>
<td>51</td>
<td>44</td>
<td>48</td>
<td>50</td>
<td>23</td>
<td>0</td>
<td>50</td>
<td>42</td>
<td>46</td>
<td>47</td>
<td>50</td>
<td>42</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fol. 16a</td>
<td>see note 13</td>
</tr>
<tr>
<td>fol. 16b</td>
<td>35</td>
<td>39</td>
<td>40</td>
<td>42</td>
<td>10</td>
<td>0</td>
<td>35</td>
<td>40</td>
<td>31</td>
<td>39</td>
<td>45</td>
<td>37</td>
<td>38</td>
<td>45</td>
<td>47</td>
<td>34</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fol. 17a</td>
<td>47</td>
<td>36</td>
<td>48</td>
<td>43</td>
<td>56</td>
<td>39</td>
<td>49</td>
<td>44</td>
<td>54</td>
<td>45</td>
<td>51</td>
<td>47</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>44</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fol. 17b</td>
<td>49</td>
<td>41</td>
<td>49</td>
<td>47</td>
<td>45</td>
<td>44</td>
<td>49</td>
<td>51</td>
<td>40</td>
<td>44</td>
<td>34</td>
<td>0</td>
<td>48</td>
<td>34</td>
<td>0</td>
<td>46</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fol. 18a</td>
<td>38</td>
<td>0</td>
<td>50</td>
<td>57</td>
<td>52</td>
<td>60</td>
<td>48</td>
<td>47</td>
<td>45</td>
<td>41</td>
<td>48</td>
<td>52</td>
<td>50</td>
<td>57</td>
<td>54</td>
<td>59</td>
<td>44</td>
<td>46</td>
<td>-</td>
</tr>
<tr>
<td>fol. 18b</td>
<td>44</td>
<td>44</td>
<td>50</td>
<td>42</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td>34</td>
<td>17</td>
<td>42</td>
<td>39</td>
<td>51</td>
<td>52</td>
<td>46</td>
<td>0</td>
<td>51</td>
<td>43</td>
<td>39</td>
<td>-</td>
</tr>
<tr>
<td>average</td>
<td>43.0</td>
<td>39.6</td>
<td>44.1</td>
<td>42.5</td>
<td>40.5</td>
<td>43.5</td>
<td>42.5</td>
<td>40.5</td>
<td>39.5</td>
<td>42.2</td>
<td>41.5</td>
<td>39.9</td>
<td>42.6</td>
<td>42.0</td>
<td>43.3</td>
<td>42.4</td>
<td>43.5</td>
<td>42.5</td>
<td>41.8</td>
</tr>
</tbody>
</table>
The first one, as it is known, contains 9 restored folios of unknown origin. Only a part of this text can be collated with the second, Dublin manuscript — there also, as if on purpose, the text is interrupted by a lacuna. The two overlapping lacunae place several pages of the text of Fihrist beyond the reach of textological criticism, they are represented now only by one anonymous restoration. The authentic character of this fragment can be confirmed only by quantitative arguments: the correspondence between the size of the lacuna and the division of the manuscript by blocks and folios.

Taking this last into account, we can put the obtained results to a test in one more way — through the Dublin manuscript. First let us find conversion coefficients for the two sets of texts: 1) the original text of the Paris manuscript and Dublin manuscript; 2) the restored part of the Paris manuscript and the Dublin manuscript. In the first case it will be 44 lines of the Paris manuscript (fol. 8b, line 4—9b, line 16) and 30.5 lines of the Dublin manuscript (fol. 4b—5a) giving the conversion coefficient of 1.44 (44 : 30.5). In the second case these are 16 lines of the restoration (fol. 10a) and the corresponding text of 12.5 lines in the Dublin manuscript (9.5 lines of fol. 5a and 3 lines of fol. 5b), which gives the conversion coefficient of 1.28 (16 : 12.5). Now we convert the text of the restored fragment (18 pages of 16 lines each) to the mistara of the Dublin manuscript, which has 25 lines: 18 × 16 : 1.28 = 225 lines (or 9 full pages), and then convert this result to the mistara of the Paris manuscript: 225 × 1.44 : 16 = 20.28 pages. In this way, reckoning the text of the restored fragment through the second (Dublin) manuscript we get the same result — 10 folios and 4.5 lines (reckoning error).

What attracts our attention in these last calculations is the conversion coefficient in the pair “restoration — Dublin manuscript” (1.28). In its “unwrapped” form it appears as the proportion 32:25, which reminds the ruling of the same texts — 32 lines make 2 pages of the restored fragment; 25 lines — a full page of the Dublin copy of Fihrist. It is more than evident that this relation is not just occasional. The scribe of the restored part was probably looking for the easiest way to fill the lacuna exactly, fitting it to the surrounding text. Finding that the 225 lines he was expecting to copy made 9 full pages, he decided to accept the closest exact number of pages multiple by 9, i.e. 18. Now he had only to check that every 25th line of the original was going to correspond to the very last line on the reverse side of each folio of the copy he was making (i.e. the 32nd line) [16]. The comparison of the restored part with the Dublin manuscript shows that that was exactly the way of adjusting the density of handwriting, after each 25th line of the Dublin copy. This last one was most probably the protograph from which the restored part was copied.

With this discovery we approach a new for textology and study of sources category of direct evidence and arguments provided by the methods of quantitative analysis of manuscripts, which are also new in Arabic studies.

Notes

2. Two folios once opening the 26th kurräsa of the manuscript, preceding fol. 251, are cut out (without any loss to the text). This kurräsa, previously having 10 folios like the rest, now has only 8 (3 in the first half, five — in the second). Fol. 251 is its first leaf. The missing folios probably also contained repeatedly copied text.
3. On both manuscripts, see Arbaske rukopisi Instituta vostokovedeniia, p. 224, No. 4731 (C 958) and p. 223, No. 4717 (C 711).
4. In Arabic manuscripts text usually starts from the verso side of the first folio, the recto side either performs protective functions or is reserved for the title of the work or for their owners’ records. The ruling of 23 lines per page is maintained through the whole manuscript.
5. The suggestion of the presence of an ‘unwàn on this page makes us hope that the first leaf missing in the manuscript still exists somewhere. Formerly there was a fashion among collectors and those trading in manuscripts to collect illuminated leaves, cutting them from manuscripts. Some of these leaves have already come to museums and libraries, some still wander from auction to auction; see E. J. Grube, Persian Painting in the Fourteenth Century. A Research Report (Napoli, 1978), p. 12, n. 30). If our leaf has survived, there exist numerous features available to identify it: its size, width of the text (line), the number of lines, the last word on the page, as well as the whole text on it, the width of the main frame of the ‘unwàn (corresponding to that of the text), and even that gold and blue are the dominating colours of the pattern (the colours of the frame surrounding the text of C 711).
6. On these manuscripts, see Arbaske rukopisi Instituta vostokovedeniia, p. 189, No. 3849 (C 2114) and No. 3850 (C 2023).
7. E. W. Lane, An Account of the Manners and Customs of the Modern Egyptians (London, 1871), i, p. 265. It is noteworthy that a mistara-like instrument performing the same function was discovered comparatively recently among the Old Believers (Starovers) in Siberia; see N. N. Pokrovskii, “O drevnerusskoï rukopisnoï traditsii u staroverov Sibiri” (“On Old Russian manuscript tradition among the Siberian Starovers”), Trudy Otdela drevnerusskoï literatury (Instituta russkoi literatury AN SSSR), XXIV (1969), pp. 396—7, with a drawing. This article was translated into English, see N. N. Pokrovskii, “Western Siberian scriptoria and binderies: ancient traditions among the Old Believers”, trans. from Russian by J. S. G. Simmons, The Book Collector, XX/Spring 1971 (1971), pp. 29—1 and pl. 1.
8. In some cases pieces of poetry in Oriental divän is preceded by a brief prosaic introduction of one or two lines. This “admixture” taking a number of lines in a manuscript ruins the complete coincidence of the two account units we declare here. In every case this “admixture” should be estimated individually.
10. It is possible that a far echo of this most simple characteristic of the volume of manuscripts through account units of paper (folios and text (line) is the never explained but sometimes appearing in descriptions of Arabic manuscripts manner to express the volume
through two rather far related features, for instance: “48 folios (…) of 21 lines per page”; see I. Iu. Krachkovskii, Izbrannoe sochineniia (Selected Works) (Moscow—Leningrad, 1960), vi, p. 507.

11. Exclusions from this rule are very rare, but still they do exist. One of them is Ismá‘íl b. al-Muqri’ work ‘Unwān al-shara‘ fī l-wāfi fi l-fiqh wa l-tarríkh wa l-nahw etc. (GAL II, 190, § 10, 1; SBl II, 254, § 10, 1, 1). It is a prosaic text with a fixed length of lines, like in verse. On this unusual literary work, see my paper “Arabskoе srednevekovoe sochinenie-krossvord” (“The Arabic medieval composition—crossword”), Rossia i arabskii mir. Nauchnye i kul’turnye sviazi, fasc. 2 (St. Petersburg, 1996), pp. 47—55, especially pp. 50—4.

12. It is more evident here than in versified texts that the real text unit is not the line of a manuscript but the number of characters—letters it contains. Line is just a particular form in which this unit is realised in this or that manuscript. To some extent, possibly, with the feeling of this measure of text the absence of spans between words in manuscripts is connected. The introduction of spans could have possibly led to disappearance of the conversion effect to which this article is dedicated.

13. Folio 13b containing verse, which should be counted by line, and folio 16a with samples of Old Persian writing different from Arabic are excluded from reckoning by letter in the Table. Also excluded are 9 lines reserved for samples of other non-Arabic alphabets but left blank (zero mark in the Table). All these passages were not taken into account when working out average characteristics. Later, however, when converting, for example, the whole text of the restored part, all these omissions were replenished according to the average text density; it possibly affected the errors which every time occur in calculations.

14. It is enough to look at the cycled fluctuations which are specially underlined in the Table. These extremities and other less prominent fluctuations of density can be explained not by some natural unstableness of the scribe’s handwriting but by the specific character of his task. He was not just copying the text, like in other cases, but inserting it within the frames set not by himself but by the size of the lacuna. In this way he had to keep watch on the gradually diminishing paper space maintaining the balance between it and the remaining portion of the text. In this position corrections of the density of handwriting are inevitable.

15. The density of handwriting of the principal scribe of the Paris manuscript is reckoned in the following way: on fol. 9b (page before the restored part) there are 16 lines containing in all 600 characters (600: 16 = 37.5 characters per line). On fol. 19a (after the restored part) there are also 16 lines containing 608 characters (608 : 16 = 38 characters per page). The average is — 1,208 : 32 = 37.5)

16. If he selected a different mistara, say of 21 lines, the calculations would be the same. The conversion coefficient — 42 : 25 = 1.68; the number of lines in the copy — 225 x 1.68; the number of pages in the copy — 225 x 1.68 : 21, the number of folios — 225 x 1.68 : 42; the number of characters in one line of characters is 1.68 times less than in the original. Not to go beyond the limit of 18 pages, when making a copy, the scribe was striving every 25th line of the original to correspond to the last, i.e. to the 42nd line of each folio of the copy.

Illustrations

Fig. 2. Mulla Khusrav (d. 885/1480), Durar al-hukkām fi sharh Ghurar al-ahkām. Manuscript C 958 in the collection of the St. Petersburg Branch of the Institute of Oriental Studies, fol. 2b.

Fig. 3. The same manuscript C 958, fol. 3a.

Fig. 4. Mulla Khusrav (d. 885/1480), Durar al-hukkām fi sharh Ghurar al-ahkām. Manuscript C 711 in the collection of the St. Petersburg Branch of the Institute of Oriental Studies, fol. 1a.

CONTENTS

TEXTS AND MANUSCRIPTS: DESCRIPTION AND RESEARCH

Val. V. Polosin. Arabic Manuscripts: Text Density and its Convertibility in Copies of the Same Work 3
O. F. Akinushkin. On the Date of al-Sihah al-'Ajamiyya's Composition 31
A. Saazykin. The Oirat (Kalmyk) Version of the “The Story of Güsü-Lama” 33

PRESENTING THE COLLECTIONS 39

A. Muminov. The Fund of Arabographic Manuscripts in the Museum-Trust “Azret-Sultân” in the City of Turkestan 39

ORIENTAL MANUSCRIPTS AND NEW INFORMATION TECHNOLOGIES 42

G. Lezin, K. Boyarsky, E. Kanevsky, A. Popova. Programming of Texts Conceptual Treatment 42

PRESENTING THE MANUSCRIPT 50

F. Abdullayeva. A Turkish Prose Version of Firdawsī's Shāh-nāma in the Manuscript Collection of the St. Petersburg State University Library 50
V. Goreglyad. The Manuscript of Kankai Ibun in the Collection of the St. Petersburg Branch of the Institute of Oriental Studies 58

BOOK REVIEWS 68

Front cover:
“A Ship Among the Blocks of Ice”, a colour drawing from the book 2 of the manuscript Kankai Ibun preserved in the collection of the St. Petersburg Branch of the Institute of Oriental Studies (С 191), fol. 14а, 14.0 × 20.5 cm.

Back cover:
“Theatre in the Capital of the Russian Empire”, a colour drawing from the book 11 of the manuscript Kankai Ibun preserved in the collection of the St. Petersburg Branch of the Institute of Oriental Studies (С 191), fols. 11б—12а, 32.5 × 26.5 cm.